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Motivation VAried Stance Topics (VAST)

What opinions are implicitly conveyed in new articles?

Source: Comments from debate articles on The New York Times Statistics
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Topic Stance

Dependence on Sentiment: swap sentiment words to confuse models
Topic-Grouped Attention (TGA):

1. Cluster semantically similar topics

.. debaters don’t strike(-)— shine(+) me as being anywhere near diverse in their perspectives on guns. Not one
of the gun-gang cited any example of where a student with a gun saved someone from something oguns

2. Assign unseen topic to closest cluster centroid (GTR) terrible(-) —tremendous(+) on their campuses. At least(-) the professor speaks up for rationality(+).

3. Compute similarity between unseen topic and GTR with
attention

Sentiment words are bold italicized, removed words (straek-out), and positive (green (+)) and negative (red (-)) sentiment words.



